874 research outputs found

    Children’s ability to recall unique aspects of one occurrence of a repeated event

    Get PDF
    Preschool and school-age children’s memory and source monitoring were investigated by questioning them about one occurrence of a repeated lab event (n = 39). Each of the four occurrences had the same structure, but with varying alternatives for the specific activities and items presented. Variable details had a different alternative each time; hi/lo details presented the identical alternative three times and changed once. New details were present in one occurrence only and thus had no alternatives. Children more often confused variable, lo, and new details across occurrences than hi details. The 4- to 5-year-oldchildren were less accurate than 7- to 8-year-old children at attributing details to the correct occurrence when specifically asked. Younger children rarely recalled new details spontaneously, whereas 50% of the older children did and were above chance at attributing them to their correct occurrence. Results are discussed with reference to script theory, fuzzy-trace theory and the source-monitoring framework

    Extraction of the beam elastic shape from uncertain FBG strain measurement points

    Get PDF
    Aim of the present paper is the analysis of the strain along the beam that is equipped with Glass Fibers Reinforced Polymers (GFRP) with an embedded set of optical Fiber Bragg Grating sensors (FBG), in the context of a project to equip with these new structural elements an Italian train bridge. Different problems are attacked, and namely: (i)during the production process [1] it is difficult to locate precisely the FBG along the reinforcement bar, therefore the following question appears: How can we associate the strain measurements to the points along the bar? Is it possible to create a signal analysis procedure such that this correspondence is found?(ii)the beam can be inflected and besides the strain at some points, we would like to recover the elastic shape of the deformed beam that is equipped with the reinforcement bars. Which signal processing do we use to determine the shape of the deformed beam in its inflection plane?(iii)if the beam is spatially inflected, in two orthogonal planes, is it possible to recover the beam spatial elastic shape? Object of the paper is to answer to these questions

    Developmental Differences in the Ability to Provide Temporal Information about Repeated Events

    Get PDF
    Children (n = 372) aged 4 - 8 years participated in 1 or 4 occurrences of a similar event and were interviewed 1 week later. Compared to 85% of children who participated once, less than 25% with repeated experience gave the exact number of times they participated, although all knew they participated more than once. Children with repeated experience were asked additional temporal questions and there were clear developmental differences. Older children were more able than younger children to judge relative order and temporal position of the four occurrences. They also demonstrated improved temporal memory for the first and last relative to the middle occurrences, while younger children did so only for the first. This is the first systematic demonstration of children’s memory for temporal information after a repeated event. We discuss implications for theories of temporal memory development and the practical implications of asking children to provide temporal information

    Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement

    Full text link
    In many civil and geotechnical applications it is of interest to monitor the strain deep inside the structure; consequently, it is necessary to embed the sensors into the structure's material. Construction and geotechnical materials, such as concrete and soil, can be affected by local defects, e.g. cracks, air pockets and inclusions. To monitor these materials at a structural level it is necessary to use long-gauge sensors. As the sensor has to be embedded in the host material, its presence causes perturbation of the strain field and influences the accuracy of the strain measurement. The aim of this research was to identify the critical parameters that influence the accuracy of the strain measurement, to study how these parameters affect the accuracy, and to give recommendations for sensor users. The study was based on finite element analysis and all involved materials were assumed to have the MöhrCoulomb elastic, perfectly plastic behavior. A suitability of the numerical model for the analysis was verified using the experimental results of two cases reported in the literature and one on-site application. The study revealed that the most important parameters that influence the accuracy of the strain measurement are the goodness of interaction (strain transfer) between the host material and the anchor pieces of the sensor, the ratio between equivalent Young's modulus of the sensor and the Young's modulus of the host material, the radius of the anchor piece and the gauge length. The numerical model and parametric study are presented in detail along with practical recommendations. © 2012 IOP Publishing Ltd.The authors would like to thank the Spanish Ministry of Education, with support received under the National Program for Mobility of Researchers (O.M. EDU/1456/2010, ref. PR2010-0293) which enabled the joint work that made this study possible. The Streicker Bridge project was realized with help of Turner Construction Co., HNTB, AG Construction Corp., Vollers Excavating & Constr., SMARTEC SA, Micron Optics, Princeton Facilities, and staff and students of CEE department of Princeton University.Calderón García, PA.; Glisic, B. (2012). Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement. Measurement Science and Technology. (23):1-15. https://doi.org/10.1088/0957-0233/23/6/065604S11523Glišić, B., & Inaudi, D. (2007). Fibre Optic Methods for Structural Health Monitoring. doi:10.1002/9780470517819Ansari, F. (2007). Practical Implementation of Optical Fiber Sensors in Civil Structural Health Monitoring. Journal of Intelligent Material Systems and Structures, 18(8), 879-889. doi:10.1177/1045389x06075760Li, H.-N., Zhou, G.-D., Ren, L., & Li, D.-S. (2009). Strain Transfer Coefficient Analyses for Embedded Fiber Bragg Grating Sensors in Different Host Materials. Journal of Engineering Mechanics, 135(12), 1343-1353. doi:10.1061/(asce)0733-9399(2009)135:12(1343)Torres, B., Payá-Zaforteza, I., Calderón, P. A., & Adam, J. M. (2011). Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring. Engineering Structures, 33(2), 539-548. doi:10.1016/j.engstruct.2010.11.012Kesavan, K., Ravisankar, K., Parivallal, S., Sreeshylam, P., & Sridhar, S. (2010). Experimental studies on fiber optic sensors embedded in concrete. Measurement, 43(2), 157-163. doi:10.1016/j.measurement.2009.08.010Azenha, M., Faria, R., & Ferreira, D. (2009). Identification of early-age concrete temperatures and strains: Monitoring and numerical simulation. Cement and Concrete Composites, 31(6), 369-378. doi:10.1016/j.cemconcomp.2009.03.004Glisic, B. (2011). Influence of the gauge length on the accuracy of long-gauge sensors employed in monitoring of prismatic beams. Measurement Science and Technology, 22(3), 035206. doi:10.1088/0957-0233/22/3/035206Leng, J. S., Winter, D., Barnes, R. A., Mays, G. C., & Fernando, G. F. (2006). Structural health monitoring of concrete cylinders using protected fibre optic sensors. Smart Materials and Structures, 15(2), 302-308. doi:10.1088/0964-1726/15/2/009Calderón, P. A., Adam, J. M., Ivorra, S., Pallarés, F. J., & Giménez, E. (2009). Design strength of axially loaded RC columns strengthened by steel caging. Materials & Design, 30(10), 4069-4080. doi:10.1016/j.matdes.2009.05.014Adam, J. M., Ivorra, S., Pallarés, F. J., Giménez, E., & Calderón, P. A. (2009). Axially loaded RC columns strengthened by steel caging. Finite element modelling. Construction and Building Materials, 23(6), 2265-2276. doi:10.1016/j.conbuildmat.2008.11.014Adam, J. M., Ivorra, S., Pallares, F. J., Jiménez, E., & Calderón, P. A. (2008). Column–joint assembly in RC columns strengthened by steel caging. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 161(6), 337-348. doi:10.1680/stbu.2008.161.6.337Adam, J. M., Ivorra, S., Pallares, F. J., Giménez, E., & Calderón, P. A. (2009). Axially loaded RC columns strengthened by steel cages. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 162(3), 199-208. doi:10.1680/stbu.2009.162.3.199Johansson, M., & Gylltoft, K. (2001). Structural behavior of slender circular steel-concrete composite columns under various means of load application. Steel and Composite Structures, 1(4), 393-410. doi:10.12989/scs.2001.1.4.393Johansson, M., & Gylltoft, K. (2002). Mechanical Behavior of Circular Steel–Concrete Composite Stub Columns. Journal of Structural Engineering, 128(8), 1073-1081. doi:10.1061/(asce)0733-9445(2002)128:8(1073

    Numerical modelling-based damage diagnostics in cultural heritage structures

    Get PDF
    In this paper, a numerical modelling-based damage diagnostics methodology is proposed for cultural heritage structures (CHSs) made of masonry. Firstly, an integration of 3D documentation data (i.e. point clouds and virtual tours) is developed for the rapid numerical model generation of CHSs. This allows to directly exploit non-comprehensive point clouds (e.g., associated to outer surfaces only) for the solid finite element model generation, where the lacking information is merged with off-site interactive and immersive frameworks. Secondly, a number of nonlinear static and dynamic analyses are conducted on the generated solid model to account for various load scenarios (e.g., earthquakes, soil settlements, etc.), considering a nonlinear continuum constitutive law. Thirdly, a crack pattern matching indicator is introduced to quantitatively identify the most likely load scenario which originated the damage pattern present in the CHS, by comparing numerical and actual crack patterns. The proposed methodology allows to rapidly generate and extract the numerical model that reflects the current (damaged) state of the CHS. This also allows to identify the parts of the CHS susceptible to further damage. The effectiveness of the proposed methodology is promisingly assessed on an actual historical masonry structure, the Morris Island lighthouse in South Carolina (USA)

    Development of a Displacement Sensor for the CERN-LHC Superconducting Cryodipoles

    Get PDF
    One of the main challenges of the Large Hadron Collider (LHC), the particle accelerator under construction at CERN (the European Organization for Nuclear Research) in Geneva, resides in the design and production of the superconducting dipoles used to steer the particles around a 27 km underground tunnel. These so-called cryodipoles are composed of an evacuated cryostat and a cold mass, that contains the particle tubes and the superconducting dipole magnet and is cooled by super uid Helium at 1.9 K. The particle beam must be centred within the dipole magnetic field with a sub-millimetre accuracy, this requires in turn that the relative displacements between the cryostat and the cold mass must be monitored with accuracy. Because of the extreme environmental conditions (the displacement measurements must be made in vacuum and between two points at a temperature difference of about 300 degrees) no adequate existing monitoring system was found for this application. It was therefore decided to develop an optical sensor suitable for this application. This contribution describes the development of this novel sensor and the first measurements performed on the LHC cryodipoles

    Equivalency points: Predicting concrete compressive strength evolution in three days

    Get PDF
    Knowledge of the compressive strength evolution of concrete is critical for activities such as stripping formwork, construction scheduling and pre-stressing operations. Although there are several procedures for predicting concrete compressive strength, reliable methodologies involve either extensive testing or voluminous databases. This paper presents a simple and efficient procedure to predict concrete strength evolution. The procedure uses an experimentally-determined parameter called the Equivalency Point as an indicator of equivalent degree of reaction. Equivalency Points are based on early age concrete deformation and temperature variations. Test results from specimens made from seven concrete types validate the approach. © 2008 Elsevier Ltd. All rights reserved
    • …
    corecore